

2

W-A M6X16mm

or

For extra stability fix to floor using appropriate fixtures REMEMBER be careful of underfloor heating

DA Fastgøres til gulvet ved hjælp af passende skruer for ekstra stabilitet HUSK, at være opmærksom på gulvvarme

DE
Für zusätzliche Stabilität mit geeignetem Befestigungsmaterial am Boden befestigen VORSICHT! Achten Sie darauf, ob eine Fußbodenheizung vorhanden ist.

Para mayor estabilidad, fijelo al suelo con los elementos de fijación correspondientes PROCEDA con precaución en caso de calefacción por suelo radiante

FR Pour plus de stabilité, le fixer au sol à l'aide de fixations appropriées ATTENTION au chauffage par le sol

Per una maggiore stabilità, fissare al pavimento utilizzando dispositivi di fissaggio
IT adeguati
Fare ATTENZIONE in caso di riscaldamento a pavimento
Voor extra stabiliteit aan de vloer bevestigen met behulp van het juiste materiaal DENK ERAAN pas op voor vloerverwarming

[^0]

8

11

CONTROL SYSTEM

AC:POWER CABLE / STRØMKABLER / NETZKABEL / CABLE DE ALIMENTACIÓN / CÂBLE D'ALIMENTATION / CAVO DI ALIMENTAZIONE / STROOMKABEL / KABEL ZASILANIA / CABO DE ALIMENTAÇÃO

RS232
S: CONTROL PANEL / KONTROLPANEL / BEDIENFELD / PANEL DE CONTROL / PANNEAU DE COMMANDE / PANNELLO DI CONTROLLO / BEDIENINGSPANEEL / PANEL STEROWANIA / PAINEL DE CONTROLO

M: MOTOR / MOTEUR / MOTORE / SILNIK

RESET: Press \vee until it reaches lowest position.
Press and hold v for 5 seconds, then press v for 1 second.

NULSTILLING: Tryk på v, indtil den når den laveste position.
Tryk og hold på vi5 sekunder, og tryk derefter på vi 1 sekund.
ZURÜCKSETZEN: Drücken Sie v, bis die niedrigste Position erreicht
ist.
Halten Sie v 5 Sekunden lang gedrückt. Drücken Sie dann $\vee 11$
Sekunde lang.

RESTABLECER: Pulse v hasta que alcance la posición más baja. Pulse y mantenga pulsado v durante 5 segundos y , a continuación, pulse \vee durante 1 segundo.

RÉINITIALISATION: appuyer sur v jusqu'à ce qu'il atteigne la position la plus basse.
Appuyer sur v et maintenir la pression pendant 5 secondes, puis appuyer sur v pendant 1 seconde.

RESET: premere v fino al raggiungimento della posizione più bassa Tenere premuto \vee per 5 secondi, quindi premere \vee per 1 secondo.

RESETTEN: Druk op v totdat de laagste positie is bereikt. Houd $v 5$ seconden ingedrukt en druk vervolgens 1 seconde op v

RESETOWANIE: Naciskać v aż do osiągnięcia najniższej pozycji. orzez 1 sekundę.

REINICIALIZAR: Prima v até atingir a posição mais baixa. Prima e mantenha premido v durante 5 segundos e, em seguida, prima \vee durante 1 segundo.

WARNINGS

- A powerful motor is in action on this product. Beware of pinch hazards.
- Do not allow children under 16 to operate.
- Risk of fire and electric shock. Use only SJT type 18 AWG power cord.
- This product takes displays up to $130 \mathrm{~kg} / 286 \mathrm{lbs}$. Heavier displays may cause failure resulting in death or serious injury.
- Motor may overheat with non-stop use for over 2:30 minutes. Allow 18 minutes to cool.

ADVARSLER

- Der anvendes en kraftig motor på dette produkt. Pas på ikke at få fingrene i klemme.
- Børn under 16 år må ikke betjene produktet.
- Risiko for brand og elektrisk stød. Brug kun SJT-strømkabel af type 18 AWG.
- Dette produkt kan bære skærme på op til 130 kg . Tungere skærme kan forårsage fejl, der kan resultere i dødsfald eller alvorlig personskade.
- Motoren kan blive overophedet ved nonstop brug i mere end 2 timer og 30 minutter. Lad produktet afkøle i 18 minutter.

WARNHINWEISE

- Dieses Produkt verfügt über einen leistungsstarken Motor. Achten Sie auf Quetschgefahren.
- Erlauben Sie Kindern unter 16 Jahren nicht, das Gerät zu bedienen.
- Brand- und Stromschlaggefahr. Verwenden Sie nur Netzkabel vom Typ SJT, AWG 18.
- Dieses Produkt ist für Bildschirme mit bis zu 130 kg geeignet. Schwerere Bildschirme können zu technischem Versagen führen, das Tod oder ernsthafte Verletzungen zur Folge haben kann.
- Der Motor kann bei Dauerbetrieb von mehr als 2:30 Minuten überhitzen. Lassen Sie ihn 18 Minuten lang abkühlen.

ADVERTENCIAS

- Este producto utiliza un potente motor para su funcionamiento. Tenga mucha precaución para evitar posibles enganches.
- No debe permitir su uso por parte de menores de 16 años.
- Riesgo de incendio y descarga eléctrica. Utilice exclusivamente un cable de alimentación SJT de 18 AWG.
- Este producto soporta pantallas de hasta $130 \mathrm{~kg} / 286 \mathrm{lb}$. Si intenta usarlo con pantallas más pesadas, podría producirse un mal funcionamiento y lesiones graves o incluso la muerte del usuario.
- El motor podría recalentarse en caso de un uso continuo y sin interrupción que supere los 2,5 minutos. Antes del siguiente uso deberá dejar que se enfríe durante 18 minutos.

AVERTISSEMENTS

- Le moteur dans ce produit est puissant. Attention aux risques de pincement.
- Ne pas laisse des enfants de moins de 16 ans l'utiliser.
- Risque d'incendie et de décharge électrique. Utiliser uniquement un câble d'alimentation de type SJT 18 AWG.
- Ce produit accepte des écrans pesant jusqu'à $130 \mathrm{~kg} / 286 \mathrm{lb}$. Des écrans plus lourds peuvent provoquer des pannes entraînant des accidents graves ou la mort.
- Le moteur peut surchauffer s'il est utilisé sans interruption pendant plus de 2 h 30 . Attendre 18 minutes pour qu'il refroidisse.

AVVERTENZE

- Questo prodotto utilizza un potente motore. Attenzione: pericolo di schiacciamento.
- Non consentire l'uso del prodotto a bambini di età inferiore a 16 anni.
- Pericolo di incendio e scosse elettriche. Utilizzare solo un cavo di alimentazione SJT da 18 AWG.
- Questo prodotto è compatibile con schermi fino a $130 \mathrm{~kg} / 286 \mathrm{lb}$. Schermi più pesanti possono causare incidenti e provocare morte o lesioni gravi.
- II motore può surriscaldarsi se utilizzato ininterrottamente per più di 2:30 minuti. Lasciarlo raffreddare per 18 minuti.

WAARSCHUWINGEN

- Dit product is voorzien van een krachtige motor. Pas op voor beknellingsgevaar.
- Laat kinderen onder de 16 jaar het product niet bedienen.
- Kans op brand en elektrische schok. Gebruik alleen een SJT-stroomkabel van type 18 AWG.
- Dit product is geschikt voor monitoren tot $130 \mathrm{~kg}(286 \mathrm{lb})$. Zwaardere monitoren kunnen defect raken met de dood of ernstig letsel tot gevolg.
- De motor kan oververhit raken bij continu gebruik gedurende meer dan 2:30 minuten. Laat het product 18 minuten afkoelen.

OSTRZEŻENIA

- W tym urządzeniu używany jest mocny silnik. Należy uważać, aby nie dopuścić do przyskrzynienia.
- Nie zezwalać na obsługę dzieciom w wieku poniżej 16 lat.
- Występuje ryzyko pożaru i porażenia prądem elektrycznym. Należy używać wyłącznie kabla zasilania SJT typu 18 AWG
- Ten produkt utrzymuje wyświetlacze o wadze do $130 \mathrm{~kg} / 286 \mathrm{lbs}$. Cięższe wyświetlacze mogą spowodować wypadek prowadzący do śmierci lub poważnych obrażeń.
- Silnik może ulec przegrzaniu w przypadku ciągłego używania przez ponad 2:30 minuty. Należy odczekać 18 minut, aż się ochłodzi.

AVISOS

- Este produto possui um motor potente. Cuidado com os riscos de entalamento.
- Não permita a utilização por crianças com menos de 16 anos.
- Risco de incêndio e choque elétrico. Utilize apenas um cabo de alimentação SJT tipo 18 AWG.
- Este produto suporta ecrãs de até 130 kg (286 lb). Ecrãs mais pesados podem causar avarias, resultando em morte ou ferimentos graves.
- Se a utilização for ininterrupta durante mais de 2 h 30 , o motor pode sobreaquecer. Deixe arrefecer durante 18 minutos.

RS-232
Baud Rate: 9600
Data Mode: 8
Stop Bit: 1
Parity Type: None
Command Structure:

Start	Function	Data Length	Data	Checksum	End
F1F1	XX	XX	$\mathrm{XX} \ldots \mathrm{XXXX}$	Function + Data Length + Data	7 E

Commands:

Function	Description
0xf1 0xf1 0x01 0x00 0x01 0x7e	Up (send every 200 ms for continuous movement)
0xf1 0xf1 0x02 0x00 0x02 0x7e	Down (send every 200ms for continuous movement)
0xf1 0xf1 0x0a $0 \times 000 \times 0 \mathrm{Ox} 7 \mathrm{e}$	Stop Action
0xf1 0xf1 0x1b 0x02 data_h data_I sum 0x7e	Go to $x(\mathrm{~mm})$ height e.g. to go to 900 mm , convert 900 to hex $=0 \times 0384$ $0 x f 10 x f 10 \times 1 b 0 \times 020 \times 030 \times 840 x a 40 x 7 e$
0xf1 0xf1 0x03 0x00 0x03 0x7e	Set memory location 1
0xf1 0xf1 0x04 0x00 0x04 0x7e	Set memory location 2
0xf1 0xf1 0x25 0x00 0x25 0x7e	Set memory location 3
0xf1 0xf1 0x26 0x00 0x26 0x7e	Set memory location 4
0xf1 0xf1 0x05 0x00 0x05 0x7e	Move to memory location 1
0xf1 0xf1 0x06 0x00 0x06 0x7e	Move to memory location 2
0xf1 0xf1 0x270x00 0x270x7e	Move to memory location 3
0xf1 0xf1 0x28 0x00 0x28 0x7e	Move to memory location 4
0xf1 0xf1 0x21 0x00 0x21 0x7e	Make current height upper limit
0xf1 0xf1 0x22 0x00 0x22 0x7e	Make current height lower limit
0xf1 0xf1 0x21 0x02 data_h data_I sum 0x7e	Set upper limit by height (mm) e.g. 900 mm , convert 900 to hex $=0 \times 0384$ 0xf1 0xf1 0x21 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x22 0x02 data_h data_I sum 0x7e	Set lower limit by height (mm) e.g. 900 mm , convert 900 to hex $=0 \times 0384$ 0xf1 0xf1 0x22 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x23 0x01 0x01 0x25 0x7e	Cancel the upper limit settings
0xf1 0xf1 0x23 0x01 0x01 0x26 0x7e	Cancel the lower limit settings
0xf1 0xf1 0x23 0x00 0x23 0x7e	Cancel the upper and lower limit settings
0xf1 0xf1 0x1c 0x00 0x1c 0x7e	Query software version
0xf1 0xf1 0x20 0x00 0x20 0x7e	Query upper and lower limits set (mm)
0xf1 0xf1 0x0c 0x00 0x0c 0x7e	Query maximum possible upper and lower limits (mm)
0xf1 0xf1 0x07 0x00 0x07 0x7e	Query status (Normal Mode/Reset Mode/Error code)
0xf1 0xf1 0x0e 0x00 0x0e 0x7e	Query current height
0xf1 0xf1 0x1f 0x01 0x00 0x20 0x7e	Query lock status
0xf1 0xf1 0x1f 0x01 0x01 0x210x7e	Lock control panel
0xf1 0xf1 0x2b 0x00 0x2b 0x7e	Emergency stop

Notes:

[^1]- Controller has sleep function to save power. You may need to send code again after wake up.

Reply Structure:

Function	Description
0xf2 0xf2 0x01 0x02 data_h data_I sum 0x7e	Current height (mm)
0xf2 0xf2 0x01 0x03 data_h data_\| memory_flag sum $0 x 7 e$	Current height (mm) of memory flag
0xf2 0xf2 0x02 0×01 data sum $0 \times 7 \mathrm{e}$	Error (E01-E13)
0xf2 0xf2 0x040x00 0x04 0x7e	Reset
0xf2 0xf2 0x02 0x00 data sum 0x7e	Abnormal Status
$\begin{aligned} & \text { 0xf2 0xf2 0x07 0x04 } \\ & \text { h_h h_II_h I_l sum 0x7e } \end{aligned}$	Max and Minimum possible height
$\begin{aligned} & \text { 0xf2 0xf2 0x1b 0x02 } \\ & \text { goal_h goal_I sum 0x7e } \end{aligned}$	External Controller specified height
0xf2 0xf2 0x1c $0 \times 000 \times 1 \mathrm{c} 0 \times 7 \mathrm{e}$	Software version
0xf2 0xf2 0x1f 0×01 data sum 0x7e	Lock 0 - not locked 1 - locked
0xf2 0xf2 0x20 0x01 data sum 0x7e	Upper and lower limit settings
$\begin{aligned} & \text { 0xf2 0xf2 0x21 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Upper limit setting
0xf2 0xf2 0x22 0x02 data_h data_I sum 0x7e	Lower limit setting
0xf2 0xf2 0x25 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Memory 1 setting
0xf2 0xf2 0x26 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Memory 2 setting
$\begin{aligned} & 0 \times f 20 \times f 20 \times 270 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Memory 3 setting
$\begin{aligned} & \text { 0xf2 0xf2 0x28 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Memory 4 setting

Structure Example:

CURRENT HEIGHT: 1000 mm (0x03E8)
Command: 0xf2 0xf2 0x01 0x02 0x03 0xe8 0Xee 0x7e

Note:

Data Length $=$ there are two bytes in data, so Data Length is 0×02
Checksum $=0 \times 01+0 \times 02+0 \times 03+0 \times e 8=0 \times e e$

Limit reply notes:

data $=0 \times 0$ upper and lower limit are not set
data $=0 \times 01$ upper limit is set
data $=0 \times 10$ lower limit is set
data $=0 \times 11$ upper limit and the lower limit is set

Memory slot notes:

0×01 - Memory 1 set
0x02- Memory 2 set
0×04 - Memory 3 set
0×08 - Memory 4 set
e.g. if both memory 1 and memory 2 are set, then the reply is 0×03 (0×01 and 0×02 summed)

Error Table:

Data	Description
0×01	e01, m1 overcurrent
0×02	e02, m2 overcurrent
0×03	e03, m3 overcurrent
0×04	e04, m4 overcurrent
0×05	e05, m5 overcurrent
0×06	e06, m6 overcurrent
0×07	e07, m1 hall signal off
0×08	e08, m2 hall signal off
0×09	e09, m3 hall signal off
$0 \times 0 \mathrm{e}$	e10, m4 hall signal off
$0 \times 0 \mathrm{~b}$	e11, m5 hall signal off
$0 \times 0 \mathrm{c}$	e12, m6 hall signal off
$0 \times 0 \mathrm{~d}$	e13, ab control box communication interrupt
$0 \times 0 \mathrm{e}$	h01, working system protection
$0 \times 0 f$	h01, overheat protection
0×10	loc, handset button lock display

RS-232
Baudhastighed: 9600
Datatilstand: 8
Stopbit: 1
Paritetstype: Ingen
Kommandostruktur:

Start	Funktion	Datalængde	Data	Kontrolsum	Afslut
F1F1	XX	XX	XX...XXXX	Funktion + Datalængde + Data	7E

Kommandoer:

Funktion	Beskrivelse
0xf1 0xf1 0x01 0x00 0x01 0x7e	Op (send for hver 200 ms for kontinuerlig bevægelse)
0xf1 0xf1 0x02 0x00 0x02 0x7e	Ned (send for hver 200 ms for kontinuerlig bevægelse)
0xf1 0xf1 0x0a 0x00 0x0a 0x7e	Stophandling
0xf1 0xf1 0x1b 0x02 data_h data_l sum 0x7e	Gå til X (mm) højde f.eks. for at gå til 900 mm , konverter 900 til hex $=0 \times 0384$ 0xf1 0xf1 0x1b 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x03 0x00 0x03 0x7e	Indstil hukommelsesplacering 1
0xf1 0xf1 0x04 0x00 0x04 0x7e	Indstil hukommelsesplacering 2
0xf1 0xf1 0x25 0x00 0x25 0x7e	Indstil hukommelsesplacering 3
0xf1 0xf1 0x26 0x00 0x26 0x7e	Indstil hukommelsesplacering 4
0xf1 0xf1 0x05 0x00 0x05 0x7e	Flyt til hukommelsesplacering 1
0xf1 0xf1 0x06 0x00 0x06 0x7e	Flyt til hukommelsesplacering 2
0xf1 0xf1 0x270x00 0x27 0x7e	Flyt til hukommelsesplacering 3
0xf1 0xf1 0x28 0x00 0x28 0x7e	Flyt til hukommelsesplacering 4
0xf1 0xf1 0x21 0x00 0x210x7e	Angiv den aktuelle højdes øvre grænse
0xf1 0xf1 0x22 0x00 0x22 0x7e	Angiv den aktuelle højdes nedre grænse
0xf1 0xf1 0x21 0x02 data_h data_l sum $0 \times 7 \mathrm{e}$	Indstil den øvre grænse efter højde (mm) f.eks. 900 mm , konverter 900 til hex $=0 \times 0384$ 0xf1 0xf1 0x21 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x22 0x02 data_h data_l sum $0 \times 7 \mathrm{e}$	Indstil den nedre grænse efter højden (mm) f.eks. 900 mm , konverter 900 til hex $=0 \times 0384$ 0xf1 0xf1 0x22 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x23 0x01 0x01 0x25 0x7e	Annuller indstillingerne for den øvre grænse
0xf1 0xf1 0x23 0x01 0x01 0x26 0x7e	Annuller indstillingerne for den nedre grænse
0xf1 0xf1 0x23 0x00 0x23 0x7e	Annuller indstillingerne for den øvre og nedre grænse
0xf1 0xf1 0x1c 0x00 0x1c 0x7e	Forespørgsel om softwareversion
0xf1 0xf1 0x20 0x00 0x20 0x7e	Forespørgsel om indstilling af øvre og nedre grænse (mm)
0xf1 0xf1 0x0c 0x00 0x0c 0x7e	Forespørgsel om den maksimalt mulige øvre og nedre grænse (mm)
0xf1 0xf1 0x07 0x00 0x070x7e	Forespørgselsstatus (Normal tilstand / Nulstillingstilstand / Fejlkode)
0xf1 0xf1 0x0e 0x00 0x0e 0x7e	Forespørgsel om den aktuelle højde
0xf1 0xf1 0x1f 0x01 0x00 0x20 0x7e	Forespørgsel om låsestatus
0xf1 0xf1 0x1f 0x01 0x01 0x21 0x7e	Lås kontrolpanel
0xf1 0xf1 0x2b 0x00 0x2b 0x7e	Nødstop

Bemærkninger:

- Fejltilstand: Der kan angives fejltilstand for at beskytte den. Send NED-kommandoen i 5 sekunder for at gå til nulstillingstilstand.
- Controller har dvalefunktion for at spare på strømmen. Du skal muligvis sende koden igen efter aktivering.

Svarstruktur:

Funktion	Beskrivelse
0xf2 0xf2 0x01 0x02 data_h data_I sum 0x7e	Aktuel højde (mm)
0xf2 0xf2 0x01 0x03 data_h data_l memory_flag sum $0 \times 7 \mathrm{e}$	Aktuel højde (mm) på hukommelsesflagge
0xf2 0xf2 0x02 0×01 data sum $0 \times 7 \mathrm{e}$	Fejl (E01-E13)
0xf2 0xf2 0x040x00 0x04 0x7e	Nulstil
0xf2 0xf2 0x02 0x00 data sum 0x7e	Unormal status
0xf2 0xf2 0x07 0x04 h_h h_II_h I_I sum 0x7e	Maks. og minimum mulig højde
0xf2 0xf2 0x1b 0x02 goal_h goal_I sum 0x7e	Angivet højde af ekstern controller
0xf2 0xf2 0x1c $0 \times 000 \times 1 \mathrm{c} 0 \times 7 \mathrm{e}$	Softwareversion
0xf2 0xf2 0x1f 0×01 data sum $0 \times 7 \mathrm{e}$	Lås 0 - ikke låst 1 - låst
0xf2 0xf2 0x20 0x01 data sum 0x7e	Indstillinger for øvre og nedre grænse
0xf2 0xf2 0x21 0x02 data_h data_l sum 0x7e	Indstilling af øvre grænse
0xf2 0xf2 0x22 0x02 data_h data_I sum 0x7e	Indstilling af nedre grænse
0xf2 0xf2 0x25 0x02 data_h data_I sum 0x7e	Indstilling af hukommelse 1
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 260 \times 02 \\ & \text { data_h data_। sum } 0 \times 7 \mathrm{e} \end{aligned}$	Indstilling af hukommelse 2
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 270 \times 02 \\ & \text { data_h data_l sum } 0 \times 7 \mathrm{e} \end{aligned}$	Indstilling af hukommelse 3
0xf2 0xf2 0x28 0x02 data_h data_I sum 0x7e	Indstilling af hukommelse 4

Struktureksempel:

AKTUEL HØJDE: 1000 mm (0x03E8)
Kommando: 0xf2 0xf2 0x01 0x02 0x03 0xe8 0Xee 0x7e

Bemærk:

Datalængde $=$ der er to bytes i data, så datalængden er 0×02
Kontrolsum $=0 \times 01+0 \times 02+0 \times 03+0 \times e 8=0 \times e \mathrm{e}$

Svarnoter om begrænsninger:

data $=0 \times 0$ øvre og nedre grænse er ikke indstillet data $=0 \times 01$ øvre grænse er indstillet data=0x10 nedre grænse er indstillet data=0x11 øvre grænse og nedre grænse er indstillet

Bemærkninger til hukommelsespladser:

0×01 - Indstilling af hukommelse 1
0x02- Indstilling af hukommelse 2
0×04 - Indstilling af hukommelse 3
0×08 - Indstilling af hukommelse 4
f.eks. hvis bảde hukommelse 1 og hukommelse 2 er indstillet, er svaret 0×03 (0×01 og 0×02 sammenlagt)

Fejltabel:

Data	Beskrivelse
0×01	e01, m1 overstrøm
0×02	e02, m2 overstrøm
0×03	e03, m3 overstrøm
0×04	e04, m4 overstrøm
0×05	e05, m5 overstrøm
0×06	e06, m6 overstrøm
0×07	e07, m1 hall signal deaktiveret
0×08	e08, m2 hall signal deaktiveret
0×09	e09, m3 hall signal deaktiveret
$0 \times 0 \mathrm{e}$	e10, m4 hall signal deaktiveret
$0 \times 0 \mathrm{~b}$	e11, m5 hall signal deaktiveret
$0 \times 0 \mathrm{c}$	e12, m6 hall signal deaktiveret
$0 \times 0 \mathrm{~d}$	e13, ab kontrolboks kommunikationsafbrydelse
$0 \times 0 \mathrm{e}$	h01, beskyttelse af arbejdssystemet
$0 \times 0 f$	h01, beskyttelse mod overophedning
0×10	loc, lås af knapper på controller

RS-232
Baudrate: 9600
Datenmodus: 8
Stopp-Bit: 1
Paritätstyp: Keiner
Befehlsstruktur:

Start	Funktion	Datenlänge	Daten	Prüfsumme	Ende
F1F1	XX	XX	$\mathrm{XX} \ldots \mathrm{XXXX}$	Funktion + Datenlänge + Daten	7 E

Befehle:

Funktion	Beschreibung
0xf1 0xf1 0x01 0x00 0x01 0x7e	nach oben (für kontinuierliche Bewegung alle 200 ms senden)
0xf1 0xf1 0x02 0x00 0x02 0x7e	nach unten (für kontinuierliche Bewegung alle 200 ms senden)
0xf1 0xf1 0x0a 0x00 0x0a 0x7e	Aktion beenden
0xf1 0xf1 0x1b 0x02 data_h data_l sum 0x7e	Auf Höhe von $x(\mathrm{~mm})$ fahren Um z. B. auf 900 mm Höhe zu fahren, 900 in Hex umwandeln $=0 \times 0384$ 0xf1 0xf1 0x1b 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x03 0x00 0x03 0x7e	Speicherposition 1 einstellen
0xf1 0xf1 0x04 0x00 0x04 0x7e	Speicherposition 2 einstellen
0xf1 0xf1 0x25 0x00 0x25 0x7e	Speicherposition 3 einstellen
0xf1 0xf1 0x26 0x00 0x26 0x7e	Speicherposition 4 einstellen
0xf1 0xf1 0x05 0x00 0x05 0x7e	Zu Speicherposition 1 wechseln
0xf1 0xf1 0x06 0x00 0x06 0x7e	Zu Speicherposition 2 wechseln
0xf1 0xf1 0x27 0x00 0x27 0x7e	Zu Speicherposition 3 wechseln
0xf1 0xf1 0x28 0x00 0x28 0x7e	Zu Speicherposition 4 wechseln
0xf1 0xf1 0x21 0x00 0x21 0x7e	Aktuelle Höhe als obere Endposition festlegen
0xf1 0xf1 0x22 0x00 0x22 0x7e	Aktuelle Höhe als untere Endposition festlegen
0xf1 0xf1 0x21 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Obere Endposition nach Höhe (mm) festlegen Beispiel: 900 mm : 900 in Hex umwandeln $=0 \times 0384$ 0xf1 0xf1 0x21 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x22 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Untere Endposition nach Höhe (mm) einstellen Beispiel: 900 mm : 900 in Hex umwandeln= 0×0384 0xf1 0xf1 0x22 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x23 0x01 0x01 0x25 0x7e	Einstellungen für obere Endposition löschen
0xf1 0xf1 0x23 0x01 0x01 0x26 0x7e	Einstellungen für untere Endposition löschen
0xf1 0xf1 0x23 0x00 0x23 0x7e	Einstellungen für obere und untere Endposition löschen
0xf1 0xf1 0x1c 0x00 0x1c 0x7e	Softwareversion abfragen
0xf1 0xf1 0x20 0x00 0x20 0x7e	Eingestellte obere und untere Endposition (mm) abfragen
0xf1 0xf1 0x0c 0x00 0x0c 0x7e	Maximal mögliche obere und untere Endposition (mm) abfragen
0xf1 0xf1 0x07 0x00 0x07 0x7e	Statusabfrage (Normalmodus/Reset-Modus/Fehlercode)
0xf1 0xf1 0x0e 0x00 0x0e 0x7e	Aktuelle Höhe abfragen
0xf1 0xf1 0x1f 0x01 0x00 0x20 0x7e	Verriegelungsstatus abfragen
0xf1 0xf1 0x1f 0x01 0x01 0x21 0x7e	Bedienfeld sperren
0xf1 0xf1 0x2b 0x00 0x2b 0x7e	Not-Halt

Anmerkungen:

- Fehlerstatus: Zum Schutz kann der Fehlerstatus eingegeben werden. NACH UNTEN-Befehl 5 Sekunden lang senden, um in den Rücksetzmodus zu wechseln.
- Der Controller verfügt über eine Ruhemodus-Funktion, um Strom zu sparen. Möglicherweise müssen Sie den Code nach der Reaktivierung erneut senden.

Antwortstruktur:

Funktion	Beschreibung
0xf2 0xf2 0x01 0x02 data_h data_l sum 0x7e	Aktuelle Höhe (mm)
$\begin{aligned} & \text { 0xf2 } 0 \times f 20 \times 010 \times 03 \\ & \text { data_h data_\| memory_flag sum } 0 \times 7 \mathrm{e} \end{aligned}$	Aktuelle Höhe (mm) des Memory-Flags
0xf2 0xf2 0x02 0x01 data sum 0x7e	Fehler (E01-E13)
0xf2 0xf2 0x04 0x00 0x04 0x7e	Zurücksetzen
0xf2 0xf2 0x02 0x00 data sum $0 \times 7 \mathrm{e}$	Anormaler Status
$\begin{aligned} & \text { 0xf2 0xf2 0x07 0x04 } \\ & \text { h_h h_ll_h I_I sum 0x7e } \end{aligned}$	Mögliche Max.- und Min.-höhe
$\begin{aligned} & 0 \times f 20 \times f 20 \times 1 b 0 \times 02 \\ & \text { goal_h goal_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Durch externen Controller vorgegebene Höhe
0xf2 0xf2 0x1c 0x00 0x1c 0x7e	Software-Version
0xf2 0xf2 0x1f 0×01 data sum $0 \times 7 \mathrm{e}$	Verriegelung 0 - nicht verriegelt 1 - verriegelt
0xf2 0xf2 $0 \times 200 \times 01$ data sum $0 \times 7 \mathrm{e}$	Einstellungen für obere und untere Endposition
$\begin{aligned} & 0 \times f 20 \times f 20 \times 210 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Einstellung der oberen Endposition
$\begin{aligned} & \text { 0xf2 0xf2 0x22 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Einstellung der unteren Endposition
$\begin{aligned} & \text { 0xf2 0xf2 0x25 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Einstellung Speicher 1
$\begin{aligned} & \text { 0xf2 0xf2 0x26 0x02 } \\ & \text { data_h data_l sum 0x7e } \end{aligned}$	Einstellung Speicher 2
$\begin{aligned} & \text { 0xf2 } 0 \times f 20 \times 270 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Einstellung Speicher 3
0xf2 0xf2 0x28 0x02 data_h data_I sum 0x7e	Einstellung Speicher 4

Strukturbeispiel:

AKTUELLE HÖHE: 1000 mm (0x03E8)
Befehl: 0xf2 0xf2 0x01 0x02 0x03 0xe8 0Xee 0x7e

Hinweis

Datenlänge $=$ Da die Daten zwei Bytes enthalten, beträgt die Datenlänge 0×02
Prüfsumme $=0 \times 01+0 \times 02+0 \times 03+0 \times e 8=0 \times e e$

Antworthinweise Endpositionen:

data $=0 \times 0$ Obere und untere Endposition sind nicht eingestellt
data $=0 \times 01$ Obere Endposition ist eingestellt data=0x10 Untere Endposition ist eingestellt data $=0 \times 11$ Obere und untere Endposition sind eingestellt

Hinweise zu den Speicherplätzen:

0×01 - Speicher 1 eingestellt
$0 \times 02-$ Speicher 2eingestellt
0×04 - Speicher 3 eingestellt
0×08 - Speicher 4 eingestellt

Wenn z. B. Speicher 1 und Speicher 2 eingestellt sind, lautet die Antwort 0×03 (Summe von 0×01 und 0×02).

Fehlertabelle:

Daten	Beschreibung
0×01	e01, m1 Überstrom
0×02	e02, m2 Überstrom
0×03	e03, m3 Überstrom
0×04	e04, m4 Überstrom
0×05	e05, m5 Überstrom
0×06	e06, m6 Überstrom
0×07	e07, m1 Hall-Signal aus
0×08	e08, m2 Hall-Signal aus
0×09	e09, m3 Hall-Signal aus
$0 \times 0 \mathrm{e}$	e10, m4 Hall-Signal aus
$0 \times 0 \mathrm{~b}$	e12, m6 Hall-Signal aus
$0 \times 0 \mathrm{c}$	e13, ab Kommunikationsunterbrechung Steuergerät
$0 \times 0 \mathrm{~d}$	h01, Systembetriebsschutz
$0 \times 0 \mathrm{e}$	h01, Überhitzungsschutz
$0 \times 0 f$	loc, Displayanzeige Tastenverriegelung Handgerät
0×10	

RS-232
Velocidad de transmisión en baudios: 9600
Modo de datos: 8
Bit de parada: 1
Tipo de paridad: ninguna
Estructura de los comandos:

Inicio	Función	Longitud de datos	Datos	Suma de comprobación	Fin
F1F1	XX	XX	$\mathrm{XX} \ldots \mathrm{XXXX}$	Función + Longitud de datos + Datos	7 E

Befehle:

Funktion	Beschreibung
0xf1 0xf1 0x01 0x00 0x01 0x7e	Arriba (se envia cada 200 ms para movimiento continuo)
0xf1 0xf1 0x02 0x00 0x02 0x7e	Abajo (se envia cada 200 ms para movimiento continuo)
0xf1 0xf1 0x0a 0x00 0x0a 0x7e	Detener acción
0xf1 0xf1 0x1b 0x02 data_h data_l sum 0x7e	Ir a $x(\mathrm{~mm})$ de altura P. ej., para ir a 900 mm , se convierte 900 a hexadecimal $=0 \times 0384$ 0xf1 0xf1 0x1b 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x03 0x00 0x03 0x7e	Establecer ubicación de memoria 1
0xf1 0xf1 0x04 0x00 0x04 0x7e	Establecer ubicación de memoria 2
0xf1 0xf1 0x25 0x00 0x250x7e	Establecer ubicación de memoria 3
0xf1 0xf1 0x26 0x00 0x26 0x7e	Establecer ubicación de memoria 4
0xf1 0xf1 0x05 0x00 0x05 0x7e	Mover a la ubicación de memoria 1
0xf1 0xf1 0x06 0x00 0x06 0x7e	Mover a la ubicación de memoria 2
0xf1 0xf1 0x270x00 0x270x7e	Mover a la ubicación de memoria 3
0xf1 0xf1 0x28 0x00 0x28 0x7e	Mover a la ubicación de memoria 4
0xf1 0xf1 0x21 0x00 0x210x7e	Establecer límite superior de altura actual
0xf1 0xf1 0x22 0x00 0x22 0x7e	Establecer límite inferior de altura actual
0xf1 0xf1 0x21 0x02 data_h data_I sum 0×7 e	Establecer límite superior según altura (mm) P. ej., 900 mm , convertir 900 a hexadecimal $=0 \times 0384$ 0xf1 0xf1 0x21 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x22 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Establecer límite inferior según altura (mm) P. ej., para 900 mm , se convierte 900 a hexadecimal $=0 \times 0384$ 0xf1 0xf1 0x22 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x23 0x01 0x01 0x25 0x7e	Cancelar la configuración del limite superior
0xf1 0xf1 0x23 0x01 0x01 0x26 0x7e	Cancelar la configuración del limite inferior
0xf1 0xf1 0x23 0x00 0x23 0x7e	Cancelar la configuración de los límites superior e inferior
0xf1 0xf1 0x1c 0x00 0x1c 0x7e	Consultar la versión del software
0xf1 0xf1 0x20 0x00 0x20 0x7e	Consultar los límites superior e inferior establecidos (mm)
0xf1 0xf1 0x0c 0x00 0x0c 0x7e	Consultar los límites superior e inferior máximos posibles (mm)
0xf1 0xf1 0x07 0x00 0x07 0x7e	Estado de la consulta (modo normal / modo de restablecimiento / código de error)
0xf1 0xf1 0x0e 0x00 0x0e 0x7e	Consultar la altura actual
0xf1 0xf1 0x1f 0x01 0x00 0x20 0x7e	Consultar estado de bloqueo
0xf1 0xf1 0x1f 0x01 0x01 0x21 0x7e	Bloquear el panel de control
0xf1 0xf1 0x2b 0x00 0x2b 0x7e	Parada de emergencia

Notas:

- Estado de error: para protección, puede pasar a estado de error. Envie el comando «ABAJO» durante 5 segundos para pasar al modo de restablecimiento.
- El controlador tiene función de suspensión para ahorrar energía. Es posible que necesite enviar el código nuevamente después de la reactivación.

Estructura de respuesta:

Función	Descripción
$\begin{aligned} & 0 \times f 2 \text { 0xf2 } 0 \times 010 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Altura actual (mm)
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 010 \times 03 \\ & \text { data_h data_I memory_flag sum 0x7e } \end{aligned}$	Altura actual (mm) del indicador de memoria
0xf2 0xf2 0x02 0x01 data sum 0x7e	Error (E01-E13)
0xf2 0xf2 0x040x00 0x04 0x7e	Restablecimiento
0xf2 0xf2 0x02 0x00 data sum 0x7e	Estado anómalo
$\begin{aligned} & \text { 0xf2 0xf2 0x07 0x04 } \\ & \text { h_h h_ll_h I_I sum 0x7e } \end{aligned}$	Altura máxima y mínima posible
$\begin{aligned} & 0 x f 20 x f 20 \times 1 b 0 \times 02 \\ & \text { goal_h goal_I sum 0x7e } \end{aligned}$	Altura especificada por el controlador externo
0xf2 0xf2 0x1c $0 \times 000 \times 1 \mathrm{c} 0 \times 7 \mathrm{e}$	Versión del software
0xf2 0xf2 0x1f 0×01 data sum 0x7e	Bloqueo 0 - No bloqueado 1 - Bloqueado
0xf2 0xf2 0x20 0x01 data sum 0x7e	Configuración de límites superior e inferior
$\begin{aligned} & \text { 0xf2 } 0 \times f 20 \times 210 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Ajuste del límite superior
$\begin{aligned} & \text { 0xf2 0xf2 0x22 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Ajuste del limite inferior
$\begin{aligned} & \text { 0xf2 0xf2 0x25 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Ajuste de la memoria 1
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 260 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Ajuste de la memoria 2
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 270 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Ajuste de la memoria 3
$\begin{aligned} & 0 \times f 20 \times f 20 \times 280 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Ajuste de la memoria 4

Ejemplo de estructura:

ALTURAACTUAL: 1000 mm (0x03E8)
Comando: 0xf2 0xf2 0x01 0x02 0x03 0xe8 0Xee 0x7e

Nota:

Longitud de datos $=$ como hay dos bytes en los datos, entonces la longitud de datos es 0×02
Suma de comprobación $=0 \times 01+0 \times 02+0 \times 03+0 \times 88=0 \times e e$

Notas de respuesta acerca de los límites:

data=0x0 los límites superior e inferior no están establecidos data $=0 \times 01$ se ha establecido un límite superior data $=0 \times 10$ se ha establecido un limite inferior data $=0 \times 11$ se han establecido el límite superior y el límite inferior

Notas sobre espacios configurados para memoria:

0×01 - Memoria 1 configurada
0x02- Memoria 2 configurada
0×04 - Memoria 3 configurada
0×08 - Memoria 4 configurada
P. ej., si se configuran tanto la memoria 1 como la memoria 2, la respuesta es 0×03 (0×01 y 0×02 sumados).

Tabla de errores:

Datos	Descripción
0×01	e01, sobrecarga eléctrica en m1
0×02	e02, sobrecarga eléctrica en m2
0×03	e03, sobrecarga eléctrica en m3
0×04	e04, sobrecarga eléctrica en m4
0×05	e05, sobrecarga eléctrica en m5
0×06	e06, sobrecarga eléctrica en m6
0×07	e07, señal hall apagada en m1 señal hall apagada en m2
0×08	e09, señal hall apagada en m3
0×09	e10, señal hall apagada en m4
$0 \times 0 \mathrm{~m}$	e11, señal hall apagada en m5
$0 \times 0 \mathrm{~b}$	e12, señal hall apagada en m6
$0 \times 0 \mathrm{c}$	e13, interrupción de comunicación de la caja de control ab
$0 \times 0 \mathrm{~d}$	h01, protección del sistema de funcionamiento
$0 \times 0 \mathrm{e}$	h01, protección contra sobrecalentamiento
$0 \times 0 f$	loc, icono en pantalla indicativo de bloqueo de botones del panel de control
0×10	

RS-232
Débit : 9600
Mode données : 8
Bit d'arrêt : 1
Type de parité : aucune

Structure de commande :

Démarrer	Fonction	Longueur des données	Données	Somme de contrôle	Fin
F1F1	XX	XX	$\mathrm{XX} \ldots \mathrm{XXXX}$	Fonction + longueur des données + données	7 E

Commandes :

Fonction	Description
0xf1 0xf1 0x01 0x00 0x01 0x7e	Vers le haut (envoyer toutes les 200 ms pour un mouvement continu)
0xf1 0xf1 0x02 0x00 0x02 0x7e	Vers le bas (envoyer toutes les 200 ms pour un mouvement continu)
$0 x f 10 x f 10 x 0 a 0 \times 000 \times 0 a 0 x 7 e$	Arrêter l'action
0xf1 0xf1 0x1b 0x02 data_h data_l sum 0x7e	Aller à une hauteur de $x(\mathrm{~mm})$ p.ex. pour passer à 900 mm , convertir 900 en hexadécimal $=0 \times 0384$ 0xf1 0xf1 0x1b 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x03 0x00 0x03 0x7e	Définir la position mémorisée 1
0xf1 0xf1 0x04 0x00 0x040x7e	Définir la position mémorisée 2
0xf1 0xf1 0x25 0x00 0x25 0x7e	Définir la position mémorisée 3
0xf1 0xf1 0x26 0x00 0x26 0x7e	Définir la position mémorisée 4
0xf1 0xf1 0x05 0x00 0x050x7e	Déplacer vers la position mémorisée 1
0xf1 0xf1 0x06 0x00 0x06 0x7e	Déplacer vers la position mémorisée 2
0xf1 0xf1 0x270x00 0x270x7e	Déplacer vers la position mémorisée 3
0xf1 0xf1 0x28 0x00 0x28 0x7e	Déplacer vers la position mémorisée 4
0xf1 0xf1 0x21 0x00 0x210x7e	Définir la hauteur actuelle comme limite supérieure
0xf1 0xf1 0x22 0x00 0x22 0x7e	Définir la hauteur actuelle comme limite inférieure
0xf1 0xf1 0x21 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Réglage de la limite supérieure par la hauteur (mm) p.ex. 900 mm , convertir 900 en hexadécimal $=0 \times 0384$ 0xf1 0xf1 0x21 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x22 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Réglage de la limite inférieure par la hauteur (mm) p.ex. 900 mm , convertir 900 en hexadécimal $=0 \times 0384$ 0xf1 0xf1 0x22 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x23 0x01 0x01 0x25 0x7e	Annuler les réglages de limite supérieure
0xf1 0xf1 0x23 0x01 0x01 0x26 0x7e	Annuler les réglages de limite inférieure
0xf1 0xf1 0x23 0x00 0x23 0x7e	Annuler les réglages de limites supérieure et inférieure
0xf1 0xf1 0x1c 0x00 0x1c 0x7e	Demander la version du logiciel
0xf1 0xf1 0x20 0x00 0x20 0x7e	Demander les limites supérieure et inférieure définies (mm)
0xf1 0xf1 0x0c 0x00 0x0c 0x7e	Demander les limites supérieure et inférieure maximales possibles (mm)
0xf1 0xf1 0x07 0x00 0x07 0x7e	État de la requête (mode normal/mode réinitialisation/code d'erreur)
0xf1 0xf1 0x0e 0x00 0x0e 0x7e	Demander la hauteur actuelle
0xf1 0xf1 0x1f 0x01 0x00 0x20 0x7e	Demander l'état de verrouillage
0xf1 0xf1 0x1f 0x01 0x01 0x21 0x7e	Verrouiller le panneau de commande
0xf1 0xf1 0x2b 0x00 0x2b 0x7e	Arrêt d'urgence

Remarques :

- État d'erreur : pour assurer la protection, il se peut que l'appareil passe à l'état d'erreur. Activez la commande VERS LE BAS pendant 5 secondes pour passer en mode réinitialisation.
- Le contrôleur dispose d'une fonction de veille pour économiser l'énergie. Vous devrez peut-être envoyer à nouveau le code après le réveil.

Structure de la réponse :

Fonction	Description
0xf2 0xf2 0x01 0x02 data_h data_I sum 0x7e	Hauteur actuelle (mm)
0xf2 0xf2 0x01 0x03 data_h data_I memory_flag sum 0x7e	Hauteur actuelle (mm) du flag mémoire
0xf2 0xf2 0x02 0x01 data sum 0x7e	Erreur (E01-E13)
0xf2 0xf2 0x040x00 0x04 0x7e	Réinitialisation
0xf2 0xf2 $0 \times 020 \times 00$ data sum $0 \times 7 \mathrm{e}$	État anormal
0xf2 0xf2 0x07 0x04 h_h h_II_h I_I sum 0x7e	Hauteurs maximale et minimale possibles
0xf2 0xf2 0x1b 0x02 goal_h goal_I sum 0x7e	Hauteur spécifiée par le contrôleur externe
0xf2 0xf2 0x1c 0x00 0x1c 0x7e	Version du logiciel
0xf2 0xf2 0x1f 0×01 data sum $0 \times 7 \mathrm{e}$	Verrou 0 - non verrouillé 1 - verrouillé
0xf2 0xf2 0x20 0x01 data sum $0 \times 7 \mathrm{e}$	Paramètres de limites supérieure et inférieure
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 210 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Paramètre limite supérieure
0xf2 0xf2 0x22 0x02 data_h data_I sum 0x7e	Paramètre limite inférieure
$\begin{aligned} & \text { 0xf2 0xf2 0x25 0x02 } \\ & \text { data_h data_1 sum 0x7e } \end{aligned}$	Paramètre mémoire 1
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 260 \times 02 \\ & \text { data_h data_l sum 0x7e } \end{aligned}$	Paramètre mémoire 2
$\begin{aligned} & 0 \times f 20 \times f 20 \times 270 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Paramètre mémoire 3
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 280 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Paramètre mémoire 4

Exemple de structure :
HAUTEUR ACTUELLE : 1000 mm (0x03E8)
Commande : 0xf2 0xf2 0x01 0x02 0x03 0xe8 0Xee 0x7e

Remarque :

Longueur des données $=$ elles contiennent deux octets, donc la longueur des données est de 0×02 Somme de contrôle $=0 \times 01+0 \times 02+0 \times 03+0 \times e 8=0 \times e e$

Notes de réponses sur les limites:

data $=0 \times 0$ les limites supérieure et inférieure ne sont pas définies data $=0 \times 01$ la limite supérieure est définie data $=0 \times 10$ la limite inférieure est définie data $=0 \times 11$ les limites supérieure et la limite inférieure sont définies

Notes sur le logement mémoire :

0×01 - Mémoire 1 définie
0×02 - Mémoire 2 définie
0×04 - Mémoire 3 définie
0×08 - Mémoire 4 définie

Par exemple, si les mémoires 1 et 2 sont définies, la réponse est 0×03 (la somme de 0×01 et 0×02).

Tableau des erreurs :

Données	Description
0×01	e01, surintensité m1
0×02	e02, surintensité m2
0×03	e03, surintensité m3
0x04	e04, surintensité m4
0×05	e05, surintensité m5
0x06	e06, surintensité m6
0×07	e07, signal hall m1 éteint
0x08	e08, signal hall m2 éteint
0x09	e09, signal hall m3 éteint
$0 \times 0 \mathrm{a}$	e10, signal hall m4 éteint
0x0b	e11, signal hall m5 éteint
0x0c	e12, signal hall m6 désactivé
0x0d	e13, interruption de communication avec le boîtier de commande ab
0x0e	h01, protection du système en fonctionnement
0xOf	h01, protection contre la surchauffe
0×10	loc, affichage du verrouillage sur la commande manuelle

RS-232
Baud rate: 9600
Modalità dati: 8
Bit di stop: 1
Tipo di parità: nessuno

Struttura dei comandi:

Inizio	Funzione	Lunghezza dati	Dati	Checksum	Fine
F1F1	XX	XX	XX...XXXX	Funzione + Lunghezza dati + Dati	7E

Comandi:

Funzione	Descrizione
0xf1 0xf1 0x01 0x00 0x01 0x7e	Su (invio ogni 200 ms per movimento continuo)
0xf1 0xf1 0x02 0x00 0x02 0x7e	Giù (invio ogni 200 ms per movimento continuo)
0xf1 0xf1 0x0a 0x00 0x0a 0x7e	Interrompi azione
0xf1 0xf1 0x1b 0x02 data_h data_l sum $0 \times 7 \mathrm{e}$	Vai all'altezza $\times(\mathrm{mm})$ ad es. per andare a 900 mm , convertire 900 in esadecimale $=0 \times 0384$ 0xf1 0xf1 0x1b 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x03 0x00 0x03 0x7e	Imposta posizione predefinita 1
0xf1 0xf1 0x04 0x00 0x040x7e	Imposta posizione predefinita 2
0xf1 0xf1 0x25 0x00 0x25 0x7e	Imposta posizione predefinita 3
0xf1 0xf1 0x26 0x00 0x26 0x7e	Imposta posizione predefinita 4
0xf1 0xf1 0x05 0x00 0x05 0x7e	Sposta nella posizione predefinita 1
0xf1 0xf1 0x06 0x00 0x06 0x7e	Sposta nella posizione predefinita 2
0xf1 0xf1 0x270x00 0x270x7e	Sposta nella posizione predefinita 3
0xf1 0xf1 0x28 0x00 0x28 0x7e	Sposta nella posizione predefinita 4
0xf1 0xf1 0x21 0x00 0x210x7e	Imposta altezza corrente come limite superiore
0xf1 0xf1 0x22 0x00 0x22 0x7e	Imposta altezza corrente come limite inferiore
0xf1 0xf1 0x21 0x02 data_h data_I sum 0x7e	Imposta limite superiore tramite altezza (mm) ad es. per 900 mm , convertire 900 in esadecimale $=0 \times 0384$ 0xf1 0xf1 0x21 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x22 0x02 data_h data_I sum 0x7e	Imposta limite inferiore tramite altezza (mm) ad es. per 900 mm , convertire 900 in esadecimale $=0 \times 0384$ 0xf1 0xf1 0x22 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x23 0x01 0x01 0x25 0x7e	Annulla le impostazioni del limite superiore
0xf1 0xf1 0x23 0x01 0x01 0x26 0x7e	Annulla le impostazioni del limite inferiore
0xf1 0xf1 0x23 0x00 0x230x7e	Annulla le impostazioni dei limiti superiore e inferiore
0xf1 0xf1 0x1c 0x00 0x1c 0x7e	Interrogazione versione software
0xf1 0xf1 0x20 0x00 0x20 0x7e	Interrogazione limiti superiore e inferiore impostati (mm)
0xf1 0xf1 0x0c 0x00 0x0c 0x7e	Interrogazione limiti superiore e inferiore massimi possibili (mm)
0xf1 0xf1 0x070x00 0x07 0x7e	Interrogazione stato (modalità normale/modalità reset/codice errore)
0xf1 0xf1 0x0e 0x00 0x0e 0x7e	Interrogazione altezza corrente
0xf1 0xf1 0x1f 0x01 0x00 0x20 0x7e	Interrogazione stato blocco
0xf1 0xf1 0x1f 0x01 0x01 0x21 0x7e	Blocca pannello di controllo
0xf1 0xf1 0x2b 0x00 0x2b 0x7e	Arresto di emergenza

Note:

- Stato di errore: lo stato di errore può subentrare a scopo di protezione. Inviare il comando GIÙ per 5 secondi per accedere alla modalità di reset
- Il controller è dotato di una funzione di sospensione per risparmiare energia. Potrebbe essere necessario inviare nuovamente il codice dopo la riattivazione.

Struttura della risposta:

Funzione	Descrizione
0xf2 0xf2 0x01 0x02 data_h data_I sum 0x7e	Altezza corrente (mm)
0xf2 0xf2 0x01 0x03 data_h data_l memory_flag sum $0 \times 7 \mathrm{e}$	Altezza corrente (mm) del flag di memoria
0xf2 0xf2 0x02 0×01 data sum $0 \times 7 \mathrm{e}$	Errore (E01-E13)
0xf2 0xf2 0x040x00 0x04 0x7e	Reset
0xf2 0xf2 0x02 0x00 data sum 0x7e	Stato anomalo
0xf2 0xf2 0x07 0x04 h_h h_II_h I_I sum 0x7e	Altezze massima e minima possibili
0xf2 0xf2 0x1b 0x02 goal_h goal_I sum 0x7e	Altezza specificata con controller esterno
0xf2 0xf2 0x1c 0x00 0x1c 0x7e	Versione software
0xf2 0xf2 0x1f 0×01 data sum $0 \times 7 \mathrm{e}$	Blocco 0 - non bloccato 1 - bloccato
0xf2 0xf2 0x20 0x01 data sum 0x7e	Impostazioni dei limiti superiore e inferiore
0xf2 0xf2 0x21 0x02 data_h data_l sum 0x7e	Impostazione del limite superiore
0xf2 0xf2 0x22 0x02 data_h data_l sum 0x7e	Impostazione del limite inferiore
$\begin{aligned} & \text { 0xf2 0xf2 0x25 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Impostazione memoria 1
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 260 \times 02 \\ & \text { data_h data_। sum 0x7e } \end{aligned}$	Impostazione memoria 2
$\begin{aligned} & \text { 0xf2 0xf2 0x27 0x02 } \\ & \text { data_h data_। sum 0x7e } \end{aligned}$	Impostazione memoria 3
0xf2 0xf2 0x28 0x02 data_h data_I sum 0x7e	Impostazione memoria 4

Esempio di struttura:

ALTEZZA CORRENTE: 1000 mm (0x03E8)
Comando: 0xf2 0xf2 0x01 0x02 0x03 0xe8 0Xee 0x7e

Nota:

Lunghezza dati $=\mathrm{i}$ dati contengono due byte, quindi la lunghezza dati è 0×02
Checksum $=0 \times 01+0 \times 02+0 \times 03+0 \times e 8=0 \times e e$

Note di risposta sui limiti:

data $=0 \times 0$ i limiti superiore e inferiore non sono impostati data $=0 \times 01$ il limite superiore è impostato data=0x10 il limite inferiore è impostato data $=0 \times 11$ il limite superiore e il limite inferiore sono impostati

Note relative agli slot di memoria:

0x01- memoria 1 impostata
0x02- memoria 2 impostata
0x04-memoria 3 impostata
0x08-memoria 4 impostata
ad es. se sono impostate sia la memoria 1 che la memoria 2, la risposta è 0×03 (somma di 0×01 e 0×02).

Tabella degli errori:

Dati	Descrizione
0×01	e01, sovracorrente m1
0×02	e02, sovracorrente m2
0×03	e03, sovracorrente m3
0×04	e04, sovracorrente m4
0×05	e05, sovracorrente m5
0×06	e06, sovracorrente m6
0×07	e07, segnale Hall m1 assente
0×08	$e 09$, segnale Hall m3 assente
0×09	$e 10$, segnale Hall m4 assente
$0 \times 0 \mathrm{a}$	e 11, segnale Hall m5 assente
$0 \times 0 \mathrm{~m}$	e12, segnale Hall m6 assente
$0 \times 0 \mathrm{c}$	e13, comunicazione con box di controllo ab interrotta
$0 \times 0 \mathrm{~d}$	h01, protezione sistema operativo
$0 \times 0 \mathrm{e}$	h01, protezione da surriscaldamento
$0 \times 0 f$	loc, indicazione blocco pulsante pannello di controllo
0×10	

RS-232
Baudrate: 9600
Gegevensmodus: 8"
Stopbit: 1
Pariteitstype: geen
Opdrachtstructuur:

Start	Functie	Gegevenslengte	Gegevens	Controlesom	Einde
F1F1	$X X$	$X X$	$X X \ldots X X X X$	Functie + gegevenslengte + gegevens	7 E

Opdrachten:

Functie	Beschrijving
0xf1 0xf1 0x01 0x00 0x01 0x7e	Omhoog (elke 200 ms verzenden voor continue beweging)
0xf1 0xf1 0x02 0x00 0x02 0x7e	Omlaag (elke 200 ms verzenden voor continue beweging)
0xf1 0xf1 0x0a 0x00 0x0a 0x7e	Actie stoppen
0xf1 0xf1 0x1b 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Ga naar $x(\mathrm{~mm})$ hoogte bijv.: om naar 900 mm te gaan, moet 900 worden geconverteerd naar hex $=0 \times 0384$ 0xf1 0xf1 0x1b 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x03 0x00 0x03 0x7e	Geheugenlocatie 1 instellen
0xf1 0xf1 0x04 0x00 0x04 0x7e	Geheugenlocatie 2 instellen
0xf1 0xf1 0x25 0x00 0x25 0x7e	Geheugenlocatie 3 instellen
0xf1 0xf1 0x26 0x00 0x26 0x7e	Geheugenlocatie 4 instellen
0xf1 0xf1 0x05 0x00 0x05 0x7e	Naar geheugenlocatie 1 verplaatsen
0xf1 0xf1 0x06 0x00 0x06 0x7e	Naar geheugenlocatie 2 verplaatsen
0xf1 0xf1 0x27 0x00 0x27 0x7e	Naar geheugenlocatie 3 verplaatsen
0xf1 0xf1 0x28 0x00 0x28 0x7e	Naar geheugenlocatie 4 verplaatsen
0xf1 0xf1 0x21 0x00 0x21 0x7e	Huidige hoogte instellen als bovengrens
0xf1 0xf1 0x22 0x00 0x22 0x7e	Huidige hoogte instellen als ondergrens
0xf1 0xf1 0x21 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Bovengrens instellen op hoogte (mm) bijv. 900 mm : converteer 900 naar hex $=0 \times 0384$ 0xf1 0xf1 0x21 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x22 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Ondergrens instellen op hoogte (mm) bijv. 900 mm : converteer 900 naar hex $=0 \times 0384$ 0xf1 0xf1 0x22 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x23 0x01 0x01 0x25 0x7e	Instellingen voor bovengrens annuleren
0xf1 0xf1 0x23 0x01 0x01 0x26 0x7e	Instellingen voor ondergrens annuleren
0xf1 0xf1 0x23 0x00 0x23 0x7e	Instellingen voor boven- en ondergrens annuleren
0xf1 0xf1 0x1c 0x00 0x1c 0x7e	Softwareversie opvragen
0xf1 0xf1 0x20 0x00 0x20 0x7e	Ingestelde boven- en ondergrenzen (in mm) opvragen
0xf1 0xf1 0x0c 0x00 0x0c 0x7e	Maximale boven- en ondergrens (in mm) opvragen
0xf1 0xf1 0x07 0x00 0x07 0x7e	Status (normale modus / modus resetten / foutcode) opvragen
0xf1 0xf1 0x0e 0x00 0x0e 0x7e	Huidige hoogte opvragen
0xf1 0xf1 0x1f 0x01 0x00 0x20 0x7e	Vergrendelingsstatus opvragen
0xf1 0xf1 0x1f 0x01 0x01 0x21 0x7e	Bedieningspaneel vergrendelen
0xf1 0xf1 0x2b 0x00 0x2b 0x7e	Noodstop

Opmerkingen:

- Foutstatus: om deze te beschermen, kan naar foutstatus worden geschakeld. Verzend de opdracht OMLAAG gedurende 5 seconden om naar de modus resetten te gaan
- De controller heeft een slaapfunctie om stroom te besparen. Mogelijk moet u de code na het ontwaken opnieuw verzenden.

Antwoordstructuur:

Functie	Beschrijving
0xf2 0xf2 0x01 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Huidige hoogte (mm)
$\begin{aligned} & \text { 0xf2 } 0 \times f 20 \times 010 \times 03 \\ & \text { data_h data_I memory_flag sum } 0 \times 7 \mathrm{e} \end{aligned}$	Huidige hoogte (mm) van de geheugenvlag
0xf2 0xf2 0x02 0x01 data sum 0x7e	Fout (E01-E13)
0xf2 0xf2 0x04 0x00 0x04 0x7e	Resetten
$0 \times f 20 \times f 20 \times 020 \times 00$ data sum $0 \times 7 \mathrm{e}$	Abnormale status
0xf2 0xf2 0x07 0x04 h_h h_II_h I_I sum 0x7e	Maximaal en minimaal mogelijke hoogte
0xf2 0xf2 0×1b 0x02 goal_h goal_I sum 0x7e	Door de externe controller gespecificeerde hoogte
0xf2 0xf2 0x1c 0x00 0x1c 0x7e	Softwareversie
0xf2 $0 \times f 20 \times 1 \mathrm{f} 0 \times 01$ data sum $0 \times 7 \mathrm{e}$	Vergrendeling 0 - niet vergrendeld 1 - vergrendeld
0xf2 $0 \times f 20 \times 200 \times 01$ data sum $0 \times 7 \mathrm{e}$	Instellingen voor boven- en ondergrens
0xf2 0xf2 0x21 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Instelling voor bovengrens
$\begin{aligned} & \text { 0xf2 0xf2 0x22 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Instelling voor ondergrens
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 250 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Instelling 1 voor geheugen
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 260 \times 02 \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Instelling 2 voor geheugen
$\begin{aligned} & \text { 0xf2 0xf2 0x27 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Instelling 3 voor geheugen
$\begin{aligned} & \text { 0xf2 } 0 \times f 20 \times 280 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Instelling 4 voor geheugen

Voorbeeld structuur:

HUIDIGE HOOGTE: 1000 mm (0x03E8)
Opdracht: 0xf2 0xf2 0x01 0x02 0x03 0xe8 0Xee 0x7e

Opmerking:

Gegevenslengte $=$ de gegevens bevatten twee bytes, dus de gegevenslengte is 0×02
Controlesom $=0 \times 01+0 \times 02+0 \times 03+0 \times e 8=0 \times e e$

Opmerkingen voor antwoorden over grenswaarden:

data $=0 \times 0$ boven- en ondergrens zijn niet ingesteld
data $=0 \times 01$ bovengrens is ingesteld
data $=0 \times 10$ ondergrens is ingesteld
data $=0 \times 11$ boven- en ondergrens zijn ingesteld

Opmerkingen over geheugensleuven:

0×01 - Geheugen 1 ingesteld
$0 x 02$ - Geheugen 2 ingesteld
0×04 - Geheugen 3 ingesteld
0×08 - Geheugen 4 ingesteld
bijv. als zowel geheugen 1 als geheugen 2 zijn ingesteld, dan is het antwoord 0×03 (0×01 en 0×02 opgeteld).

Foutentabel:

Gegevens	Beschrijving
0×01	e01, overstroom m1
0×02	e02, overstroom m2
0×03	e03, overstroom m3
0×04	e04, overstroom m4
0×05	e05, overstroom m5
0×06	e06, overstroom m6
0×07	e07, halsignaal m1 uit
0×08	$e 09$, halsignaal m2 uit
0×09	$e 10$, halsignaal m4 uit
$0 \times 0 \mathrm{a}$	e11, halsignaal m5 uit
$0 \times 0 \mathrm{~b}$	e12, halsignaal m6 uit
$0 \times 0 \mathrm{c}$	e13, ab communicatieonderbreking schakelkast
$0 \times 0 \mathrm{~d}$	h01, bescherming werkend systeem
$0 \times 0 \mathrm{e}$	h01, oververhittingsbeveiliging
$0 \times 0 f$	lock, pictogram dat aangeeft dat de handset vergrendeld is
0×10	

RS-232
Szybkość transmisji: 9600
Tryb danych: 8
Bit zakończenia transmisji: 1
Typ parzystości: brak
Struktura polecenia:

Start	Funkcja	Długość danych	Data	Suma kontrolna	Koniec
F1F1	XX	XX	XX...XXXX	Funkcja + długość danych + dane	7E

Polecenie:

Funkcja	Opis
0xf1 0xf1 0x01 0x00 0x01 0x7e	W górę (wysyłane co $200 \mathrm{~ms} \mathrm{w} \mathrm{przypadku} \mathrm{ruchu} \mathrm{ciągłego)}$
0xf1 0xf1 0x02 0x00 0x02 0x7e	W dół (wysyłane co 200 ms w przypadku ruchu ciągłego)
0xf1 0xf1 0x0a 0x00 0x0a 0x7e	Zatrzymanie działania
0xf1 0xf1 0x1b 0x02 data_h data_l sum $0 \times 7 \mathrm{e}$	Przejdź do $x(\mathrm{~mm})$ wysokości np. aby przejść do 900 mm , konwertuj 900 na kod szesnastkowy $=0 \times 0384$ 0xf1 0xf1 0x1b 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x03 0x00 0x03 0x7e	Ustaw lokalizację w pamięci 1
0xf1 0xf1 0x04 0x00 0x04 0x7e	Ustaw lokalizację w pamięci 2
0xf1 0xf1 0x25 0x00 0x25 0x7e	Ustaw lokalizację w pamięci 3
0xf1 0xf1 0x26 0x00 0x26 0x7e	Ustaw lokalizację w pamięci 4
0xf1 0xf1 0x05 0x00 0x05 0x7e	Przejdź do lokalizacji w pamięci 1
0xf1 0xf1 0x06 0x00 0x06 0x7e	Przejdź do lokalizacji w pamięci 2
0xf1 0xf1 0x270x00 0x270x7e	Przejdż do lokalizacji w pamięci 3
0xf1 0xf1 0x28 0x00 0x28 0x7e	Przejdź do lokalizacji w pamięci 4
0xf1 0xf1 0x21 0x00 0x21 0x7e	Ustaw bieżącą wysokość jako górny limit
0xf1 0xf1 0x22 0x00 0x22 0x7e	Ustaw bieżącą wysokość jako dolny limit
0xf1 0xf1 0x21 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Ustaw górny limit na wysokości (mm) np. 900 mm , konwertuj 900 na kod szesnastkowy $=0 \times 0384$ 0xf1 0xf1 0x21 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x22 0x02 data_h data_I sum 0x7e	Ustaw dolny limit na wysokości (mm) np. 900 mm , konwertuj 900 na kod szesnastkowy $=0 \times 0384$ 0xf1 0xf1 0x22 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x23 0x01 0x01 0x25 0x7e	Anuluj ustawienia górnego limitu
0xf1 0xf1 0x23 0x01 0x01 0x26 0x7e	Anuluj ustawienia dolnego limitu
0xf1 0xf1 0x23 0x00 0x23 0x7e	Anuluj ustawienia górnego i dolnego limitu
0xf1 0xf1 0x1c 0x00 0x1c 0x7e	Sprawdź wersję oprogramowania
0xf1 0xf1 0x20 0x00 0x20 0x7e	Sprawdź ustawienie górnego i dolnego limitu (mm)
0xf1 0xf1 0x0c 0x00 0x0c 0x7e	Sprawdź maksymalny możliwy górny i dolny limit (mm)
0xf1 0xf1 0x070x00 0x070x7e	Sprawdź status (Tryb nornalny/Tryb resetowania/Kod błędu)
0xf1 0xf1 0x0e 0x00 0x0e 0x7e	Sprawdź bieżącą wysokość
0xf1 0xf1 0x1f 0x01 0x00 0x20 0x7e	Sprawdź stan blokady
0xf1 0xf1 0x1f 0x01 0x01 0x21 0x7e	Zablokuj panel sterowania
0xf1 0xf1 0x2b 0x00 0x2b 0x7e	Zatrzymanie awaryjne

Uwagi:

- Stan błędu: W celu ochrony urządzenie może przejść w stan błędu. Wysyłaj polecenie w DÓŁ przez 5 sekund, aby przejść w tryb resetowania
- Kontroler jest wyposażony w funkcję uśpienia w celu oszczędzania energii. Może być konieczne ponowne przesłanie kodu po wybudzeniu.

Struktura odpowiedzi:

Funkcja	Opis
$\begin{aligned} & \text { 0xf2 0xf2 0x01 0x02 } \\ & \text { data_h data_l sum 0x7e } \end{aligned}$	Bieżąca wysokość (mm)
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 010 \times 03 \\ & \text { data_h data_I memory_flag sum 0x7e } \end{aligned}$	Bieżąca wysokość (mm) flagi pamięci
0xf2 0xf2 0x02 0x01 data sum 0x7e	Błąd (E01-E13)
0xf2 0xf2 0x040x00 0x040x7e	Przycisk reset
0xf2 0xf2 0x02 0x00 data sum 0x7e	Nieprawidłowy status
0xf2 0xf2 0x07 0x04 h_h h_ll_h I_I sum 0x7e	Maksymalna i minimalna możliwa wysokość
0xf2 0xf2 0x1b 0x02 goal_h goal_I sum $0 \times 7 \mathrm{e}$	Wysokość podana w zewnętrznym kontrolerze
0xf2 0xf2 0x1c 0x00 0x1c 0x7e	Wersja oprogramowania
$0 \times f 20 \times f 20 \times 1 f 0 \times 01$ data sum $0 \times 7 \mathrm{e}$	Blokada 0 - niezablokowana 1 - zablokowana
0xf2 0xf2 0x20 0x01 data sum 0x7e	Ustawienia górnego i dolnego limitu
$\begin{aligned} & 0 \times f 2 \text { 0xf2 } 0 \times 210 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Ustawienie górnego limitu
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 220 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Ustawienie dolnego limitu
$\begin{aligned} & \text { 0xf2 0xf2 0x25 0x02 } \\ & \text { data_h data_I sum 0x7e } \end{aligned}$	Ustawienie pamięci 1
$\begin{aligned} & 0 \times f 20 \times f 20 \times 260 \times 02 \\ & \text { data_h data_l sum } 0 \times 7 e \end{aligned}$	Ustawienie pamięci 2
$\begin{aligned} & 0 \times f 2 \text { 0xf2 } 0 \times 270 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Ustawienie pamięci 3
$\begin{aligned} & 0 \times f 20 \times f 20 \times 280 \times 02 \\ & \text { data_h data_I sum } 0 \times 7 \mathrm{e} \end{aligned}$	Ustawienie pamięci 4

Przykład struktury:

BIEŻĄCA WYSOKOŚĆ: 1000 mm (0x03E8)
Polecenie: 0xf2 0xf2 0x01 0x02 0x03 0xe8 0Xee 0x7e

Uwaga:

Długość danych $=\mathrm{w}$ danych są dwa bajty, toteż Długość danych wynosi 0×02
Suma kontrolna $=0 \times 01+0 \times 02+0 \times 03+0 \times 88=0 \times e \mathrm{e}$

Uwagi do odpowiedzi dot. limitu:

data $=0 \times 0$ górny i dolny limit nie został ustawiony
data $=0 \times 01$ górny limit jest ustawiony
data=0x10 dolny limit jest ustawiony
data= 0×11 górny i dolny limit są ustawione

Uwagi do przedziałów pamięci:

0x01-Pamięć 1 ustawiona
0x02-Pamięć 2 ustawiona
0x04 - Pamięć 3 ustawiona
0x08-Pamięć 4 ustawiona
np. jeśli pamięć 1 i pamięć 2 są ustawione, odpowiedź wynosi 0×03 (suma 0×01 i 0×02).

Tablica błędów:

Data	Opis
0×01	e01, przetężenie m1
0×02	e02, przetężenie m2
0×03	e03, przetężenie m3
0×04	e04, przetężenie m4
0×05	e05, przetężenie m5
0×06	e06, przetężenie m6
0×07	e07, sygnał hall m1 wył
0×08	e08, sygnał hall m2 wył
0×09	e09, sygnał hall m3 wył
$0 \times 0 \mathrm{e}$	e10, sygnał hall m4 wył
$0 \times 0 \mathrm{~b}$	e11, sygnał hall m5 wył
$0 \times 0 \mathrm{e}$	e12, sygnał hall m6 wył
$0 \times 0 \mathrm{~d}$	e13, przerwa komunikacji skrzynki sterowania ab
$0 \times 0 \mathrm{e}$	h01, ochrona systemu roboczego
$0 \times 0 f$	h01, ochrona przed przegrzaniem
0×10	loc, blokada przycisków klawiatury wyświetlacza
0	

RS-232
Velocidade de transmissão: 9600
Modo de dados: 8
Bit de paragem: 1
Tipo de paridade: nenhuma

Estrutura dos comandos:

Iniciar	Função	Comprimento dos dados	Dados	Soma de controlo	Fim
F1F1	XX	XX	$\mathrm{XX} \ldots \mathrm{XXXX}$	Função + Comprimento dos dados + Dados	7 E

Comandos:

Função	Descrição
0xf1 0xf1 0x01 0x00 0x01 0x7e	Para cima (enviar a cada 200 ms , para movimento contínuo)
0xf1 0xf1 0x02 0x00 0x02 0x7e	Para baixo (enviar a cada 200 ms , para movimento contínuo)
0xf1 0xf1 0x0a 0x00 0x0a 0x7e	Interromper ação
0xf1 0xf1 0x1b 0x02 data_h data_l sum $0 \times 7 \mathrm{e}$	Ir para $x(\mathrm{~mm})$ de altura Por exemplo: para ir para 900 mm , converta 900 para hexadecimal $=0 \times 0384$ 0xf1 0xf1 0x1b 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x03 0x00 0x03 0x7e	Definir a posição 1 da memória
0xf1 0xf1 0x04 0x00 0x04 0x7e	Definir a posição 2 da memória
0xf1 0xf1 0x25 0x00 0x25 0x7e	Definir a posição 3 da memória
0xf1 0xf1 0x26 0x00 0x26 0x7e	Definir a posição 4 da memória
0xf1 0xf1 0x05 0x00 0x05 0x7e	Ir para a posição 1 da memória
0xf1 0xf1 0x06 0x00 0x06 0x7e	Ir para a posição 2 da memória
0xf1 0xf1 0x270x00 0x270x7e	Ir para a posição 3 da memória
0xf1 0xf1 0x28 0x00 0x28 0x7e	Ir para a posição 4 da memória
0xf1 0xf1 0x21 0x00 0x210x7e	Fazer da altura atual o limite superior
0xf1 0xf1 0x22 0x00 0x22 0x7e	Fazer da altura atual o limite inferior
0xf1 0xf1 0x21 0x02 data_h data_I sum $0 \times 7 \mathrm{e}$	Definir o limite superior por altura (mm) Por exemplo: 900 mm , converter 900 para hexadecimal $=0 \times 0384$ 0xf1 0xf1 0x21 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x22 0x02 data_h data_l sum $0 \times 7 \mathrm{e}$	Definir o limite inferior por altura (mm) Por exemplo: 900 mm , converter 900 para hexadecimal $=0 \times 0384$ 0xf1 0xf1 0x22 0x02 0x03 0x84 0xa4 0x7e
0xf1 0xf1 0x23 0x01 0x01 0x25 0x7e	Cancelar as configurações do limite superior
0xf1 0xf1 0x23 0x01 0x01 0x26 0x7e	Cancelar as configurações do limite inferior
0xf1 0xf1 0x23 0x00 0x23 0x7e	Cancelar as configurações dos limites superior e inferior
0xf1 0xf1 0x1c 0x00 0x1c 0x7e	Versão do software de consulta
0xf1 0xf1 0x20 0x00 0x20 0x7e	Consultar os limites superior e inferior definidos (mm)
0xf1 0xf1 0x0c 0x00 0x0c 0x7e	Consultar os limites superior e inferior possíveis (mm)
0xf1 0xf1 0x07 0x00 0x07 0x7e	Consultar o estado (Modo normal / Modo de reinicialização / Código de erro)
0xf1 0xf1 0x0e 0x00 0x0e 0x7e	Consultar a altura atual
0xf1 0xf1 0x1f 0x01 0x00 0x20 0x7e	Consultar o estado do bloqueio
0xf1 0xf1 0x1f 0x01 0x01 0x21 0x7e	Bloquear o painel de controlo
0xf1 0xf1 0x2b 0x00 0x2b 0x7e	Paragem de emergência

Notas:

- Estado de Erro: por questão de proteção, pode entrar em estado de erro. Envie o comando PARA BAIXO durante 5 segundos, para entrar no modo de reinicialização
- O controlador tem uma função de suspensão, para economizar energia. Pode ser necessário enviar o código novamente após o despertar.

Estrutura da resposta:

Função	Descrição
0xf2 0xf2 0x01 0x02 data_h data_I sum 0x7e	Altura atual (mm)
0xf2 0xf2 0x01 0x03 data_h data_I memory_flag sum $0 \times 7 \mathrm{e}$	Altura atual (mm) do sinalizador de memória
0xf2 0xf2 0x02 0×01 data sum $0 \times 7 \mathrm{e}$	Erro (E01-E13)
0xf2 0xf2 0x040x00 0x04 0x7e	Reinicialização
0xf2 0xf2 0x02 0x00 data sum 0x7e	Estado anormal
0xf2 0xf2 0x07 0x04 h_h h_II_h I_I sum 0x7e	Alturas máxima e mínima possiveis
0xf2 0xf2 0x1b 0x02 goal_h goal_I sum 0x7e	Altura especificada do controlador externo
0xf2 0xf2 0x1c 0x00 0x1c 0x7e	Versão do software
$0 \times f 20 \times f 20 \times 1 \mathrm{f} 0 \times 01$ data sum $0 \times 7 \mathrm{e}$	Bloqueio: 0 - não bloqueado; 1 - bloqueado
0xf2 0xf2 0x20 0x01 data sum 0x7e	Configurações dos limites superior e inferior
0xf2 0xf2 0x21 0x02 data_h data_l sum 0x7e	Configuração do limite superior
0xf2 0xf2 0x22 0x02 data_h data_l sum 0x7e	Configuração do limite inferior
0xf2 0xf2 0x25 0x02 data_h data_I sum 0x7e	Configuração da memória 1
$\begin{aligned} & \text { 0xf2 0xf2 } 0 \times 260 \times 02 \\ & \text { data_h data_। sum 0x7e } \end{aligned}$	Configuração da memória 2
$\begin{aligned} & \text { 0xf2 0xf2 0x27 0x02 } \\ & \text { data_h data_। sum 0x7e } \end{aligned}$	Configuração da memória 3
0xf2 0xf2 0x28 0x02 data_h data_I sum 0x7e	Configuração da memória 4

Exemplo de estrutura:

ALTURA ATUAL: 1000 mm (0x03E8)
Comando: 0xf2 0xf2 0x01 0x02 0x03 0xe8 0Xee 0x7e

Nota:

Comprimento dos dados $=$ existem dois bytes nos dados, pelo que o comprimento dos dados é 0×02
Soma de controlo $=0 \times 01+0 \times 02+0 \times 03+0 \times e 8=0 x e e$

Limitar notas de resposta:

data $=0 \times 0$ os limites superior e inferior não estão definidos data $=0 \times 01$ o limite superior está definido data $=0 \times 10$ o limite inferior está definido data $=0 \times 11$ os limites superior e inferior estão definidos

Notas sobre a ranhura de memória:

0×01 - Memória 1 definida
0x02- Memória 2 definida
0x04- Memória 3 definida
0×08 - Memória 4 definida

Por exemplo: se a memória 1 e a memória 2 estiverem definidas, a resposta é 0×03 (0×01 e 0×02 somados)

Tabela de erros:

Dados	Descrição
0×01	e01, sobrecarga m1
0×02	e02, sobrecarga m2
0×03	e03, sobrecarga m3
0×04	e04, sobrecarga m4
0×05	e05, sobrecarga m5
0×06	e06, sobrecarga m6
0×07	e07, sinal m1 hall desligado
0×08	e09, sinal m2 hall desligado m3 hall desligado
0×09	e10, sinal m4 hall desligado
$0 \times 0 \mathrm{e}$	e11, sinal m5 hall desligado
$0 \times 0 \mathrm{~b}$	e12, sinal m6 hall desligado
$0 \times 0 \mathrm{c}$	e13, interrupção da comunicação da caixa de controlo ab
$0 \times 0 \mathrm{~d}$	h01, proteção do sistema em funcionamento
$0 \times 0 \mathrm{e}$	h01, proteção contra sobreaquecimento
$0 \times 0 f$	loc, ecrã de bloqueio do botão do painel de controlo
0×10	

THIS DECLARATION OF CONFORMITY IS ISSUED UNDER THE SOLE RESPONSBILITY OF:

VISION

Part of Azlan Logistics Ltd
Redwood 2,
Chineham Business Park
Crockford Lane
Basingstoke
Hampshire
RG24 8WQ
United Kingdom

Product Identification: VFM-F50

Country of Origin: China

THE PRODUCT MENTIONED IN THIS DECLARARTION ARE IN CONFORMITY WITH:

EU Community Legislation Restriction of Hazardous Substances (RoHS) Directive 2011/65/EU, and directive (EU) 2015/863, amending Annex II to Directive 2011/65/EU as regards restricted substances, to include phthalates.

Harmonised standards Safety of Electrical equipment (LVD) EN 60335-1:2012+A11:2014+A13:2017+A1:2019++A14:2019+A2:2019+A15:2021

```
    Electromagnetic Compatibility (EMC)
    EN 55014-1:2017+A11:2020
    EN 55014-2:2015
    EN IEC 61000-3-2:2019
    EN61000-3-3:2013+A1:2019
```

Worldwide
International Electrotechnical Commission (IEC)
IEC 60335-1:2020

Australia/New Zealand - RCM
AS CISPR 14.1:2018
AS/NZS 60335.1:2020

United States of America - FCC
FCC Rules and Regulations Part 15 Subpart B: 2020

Electromagnetic Compatibility (UKCA-EMC)
BS EN 55014-1:2017+A11:2020
BS EN 55014-2:2015
BS EN IEC 61000-3-2:2019
BS EN 61000-3-3:2013+A1:2019

Safety of Electrical equipment (UKCA-LVD)
BS EN 60335-1:2012+A11:2014+A13:2017+A1:2019++A14:2019+A2:2019+A15:20

UL962
UL62368

SIGNED FOR AND ON BEHALF OF VISION BY:

Stuart Lockhart
PLACE AND DATE OF ISSUE: UK 18/04/2022
Director

DENNE OVERENSSTEMMELSESERKLÆRING UDSTEDES MED ENEANSVAR FOR:

VISION

Part of Azlan Logistics Ltd
Redwood 2,
Chineham Business Park
Crockford Lane
Basingstoke
Hampshire
RG24 8WQ
Storbritannien

Produktidentifikation: VFM-F50

Oprindelsesland: Kina

PRODUKTET, DER ER OMFATTET AF DENNE ERKLÆRING, ER I OVERENSSTEMMELSE MED:

EU-fællesskabslovgivning Direktiv 2011/65/EU om begrænsning af anvendelsen af visse farlige stoffer (RoHS) og direktiv (EU) 2015/863 om ændring af bilag II til direktiv 2011/65/EU for så vidt angår begrænsede stoffer til også at omfatte ftalater.

Harmoniserede standarder Sikkerhed af elektrisk udstyr (LVD)
EN 60335-1:2012+A11:2014+A13:2017+A1:2019++A14:2019+A2:2019+A15:2021

```
Elektromagnetisk kompatibilitet (EMC)
EN 55014-1:2017+A11:2020
EN 55014-2:2015
EN IEC 61000-3-2:2019
EN61000-3-3:2013+A1:2019
```

På verdensplan
Den Internationale Elektrotekniske Kommission (IEC) IEC 60335-1:2020

Australien/New Zealand - RCM
AS CISPR 14.1:2018
AS/NZS 60335.1:2020

Amerikas Forenede Stater - FCC
FCC-regler og regulativer del 15, subpart B: 2020

Elektromagnetisk kompatibilitet (UKCA-EMC)
BS EN 55014-1:2017+A11:2020
BS EN 55014-2:2015
BS EN IEC 61000-3-2:2019
BS EN 61000-3-3:2013+A1:2019

Sikkerhed af elektrisk udstyr (UKCA-LVD)
BS EN 60335-1:2012+A11:2014+A13:2017+A1:2019++A14:2019+A2:2019+A15:2021

UL962
UL62368

UNDERSKREVET FOR OG PÅ VEGNE AF VISION AF:

Stuart Lockhart
STED OG DATO FOR UDSTEDELSE: UK 18/04/2022
Direktør

DIESE KONFORMITÄTSERKLÄRUNG WIRD HERAUSGEGEBEN UNTER ALLEINIGER VERANTWORTUNG VON:

VISION

Part of Azlan Logistics Ltd
Redwood 2,
Chineham Business Park
Crockford Lane
Basingstoke
Hampshire
RG24 8WQ
Vereinigtes Königreich

Produktidentifikation: VFM-F50

Ursprungsland: China

DAS IN DIESER ERKLÄRUNG GENANNTE PRODUKT STIMMT ÜBEREIN MIT:

EU-Rechtsvorschriften Richtlinie 2011/65/EU zur Beschränkung der Verwendung bestimmter gefährlicher Stoffe und Richtlinie (EU) 2015/863 zur Änderung von Anhang II der Richtlinie 2011/65 EU hinsichtlich der Erweiterung der Liste der Stoffe, die Beschränkungen unterliegen, um Phthalate.

```
    Elektromagnetische Verträglichkeit (EMC)
    EN 55014-1:2017 + A11:2020
    EN 55014-2:2015
    EN IEC 61000-3-2:2019
    EN61000-3-3:2013 + A1:2019
Weltweit Internationale elektrotechnische Kommission (IEC)
    IEC 60335-1:2020
    Australien/Neuseeland - RCM
ALS CISPR 14.1:2018
AS / NZS 60335.1:2020
Vereinigte Staaten von Amerika - FCC
FCC-Vorschriften und Bestimmungen, Teil 15, Abschnitt B: }202
Elektromagnetische Verträglichkeit (UKCA-EMC)
BS EN 55014-1:2017 + A11:2020
BS EN 55014-2:2015
BS EN IEC 61000-3-2:2019
BS EN 61000-3-3:2013 + A1:2019
Sicherheitsanforderungen an Niederspannungsgeräte (UKCA-LVD)
BS EN 60335-1:2012 + A11:2014 + A13:2017 + A1:2019 ++ A14:2019 + A2:2019 +
A15:2021
UL962
UL62368
```

UNTERZEICHNET FÜR UND IM AUFTRAG VON VISION DURCH:

Stuart Lockhart
ORT UND DATUM DER AUSSTELLUNG: Großbritannien, 18.04.2022
Verwaltungsratsmitglied

ESTA DECLARACIÓN DE CONFORMIDAD SE EMITE BAJO LA RESPONSABILIDAD EXCLUSIVA DE:

VISION
Part of Azlan Logistics Ltd
Redwood 2,
Chineham Business Park
Crockford Lane
Basingstoke
Hampshire
RG24 8WQ
Reino Unido

Identificación del producto: VFM-F50

País de origen: China

EL PRODUCTO INDICADO EN ESTA DECLARACIÓN CUMPLE CON LA SIGUIENTE NORMATIVA:

Legislación	Directiva 2011/65/UE sobre la Restricción de sustancias peligrosas (RoHS) y la
	Directiva (UE) 2015/863, la cual modifica el anexo II de la Directiva 2011/65/UE en lo que se refiere a sustancias restringidas, para incluir ftalatos.
Normas armonizadas	Seguridad sobre los equipos radioeléctricos (DBV)
	EN 60335-1:2012 + A11:2014 + A13:2017 + A1:2019 + A14:2019 + A $2: 2019+\mathrm{A} 15: 2021$

Compatibilidad electromagnética (CEM)
EN 55014-1:2017 + A11:2020
EN 55014-2:2015
EN IEC 61000-3-2:2019
EN61000-3-3:2013 + A1:2019
A nivel mundial
Comisión Electrotécnica Internacional (IEC)
IEC 60335-1:2020

RCM para Australia/ Nueva Zelanda
AS CISPR 14.1:2018
AS/NZS 60335.1:2020

FCC de Estados Unidos de América
Normas y reglamentos de la FCC, parte 15, subparte B: 2020
Compatibilidad electromagnética (UKCA-CEM)
BS EN 55014-1:2017 + A11:2020
BS EN 55014-2:2015
BS EN IEC 61000-3-2:2019
BS EN 61000-3-3:2013 + A1:2019
Seguridad de los equipos radioeléctricos (UKCA-DBV)
BS EN 60335-1:2012 + A11:2014 + A13:2017 + A1:2019 + A14:2019 + A2:2019 +
A15:2021
UL962
UL62368

EN REPRESENTACIÓN DE VISION, FIRMADO POR:

Stuart Lockhart
LUGAR Y FECHA DE EMISIÓN: REINO UNIDO 18/04/2022
Director

LA PRÉSENTE DÉCLARATION DE CONFORMITÉ EST DÉLIVRÉE SOUS LA SEULE RESPONSABILITÉ DE :

VISION

Part of Azlan Logistics Ltd
Redwood 2,
Chineham Business Park
Crockford Lane
Basingstoke
Hampshire
RG24 8WQ
Royaume-Uni

Identification du produit : VFM-F50

Pays d'origine : Chine

LES PRODUITS MENTIONNÉS DANS LA PRÉSENTE DÉCLARATION SONT CONFORMES À :

Législation communautaire de I'UE Directive 2011/65/UE relative à la restriction des substances dangereuses (RoHS) et directive (UE) 2015/863 modifiant l'annexe II de la directive 2011/65/UE en ce qui concerne les substances soumises à restriction, afin d'y inclure les phtalates.

Normes harmonisées
Sécurité des équipements électriques (LVD)
Compatibilité électromagnétique (CEM)
EN 55014-1:2017+A11:2020
EN 55014-2:2015
EN IEC 61000-3-2:2019
EN61000-3-3:2013+A1:2019
Dans le monde entier \quad Commission électrotechnique internationale (IEC)

IEC 60335-1:2020

Australie/Nouvelle-Zélande - RCM
AS CISPR 14.1:2018
AS/NZS 60335.1:2020

États-Unis d'Amérique - FCC
Règles et règlements de la FCC, partie 15, sous-partie B : 2020

Compatibilité électromagnétique (UKCA-EMC)
BS EN 55014-1:2017+A11:2020
BS EN 55014-2:2015
BS EN IEC 61000-3-2:2019
BS EN 61000-3-3:2013+A1:2019
Sécurité des équipements électriques (UKCA-LVD)
BS EN 60335-1:2012+A11:2014+A13:2017+A1:2019++A14:2019+A2:2019+A15:2021
UL962
UL62368

SIGNÉ POUR ET AU NOM DE VISION PAR :

Stuart Lockhart
LIEU ET DATE DE DÉLIVRANCE : ROYAUME-UNI 18/04/2022
Directeur

LA PRESENTE DICHIARAZIONE DI CONFORMITÀ VIENE EMESSA SOTTO L’ESCLUSIVA RESPONSABILITÀ DI:

VISION

Part of Azlan Logistics Ltd
Redwood 2,
Chineham Business Park
Crockford Lane
Basingstoke
Hampshire
RG24 8WQ
Regno Unito

Identificazione del prodotto: VFM-F50

Paese di origine: Cina

I PRODOTTI MENZIONATI NELLA PRESENTE DICHIARAZIONE SONO CONFORMI A:

Legislazione UE Direttiva 2011/65/UE (RoHS) sulla restrizione all'uso di sostanze pericolose e direttiva (UE) 2015/863, che modifica l'allegato II della direttiva 2011/65/UE per quanto riguarda le sostanze soggette a restrizioni d'uso includendo gli ftalati.

Norme armonizzate
Sicurezza delle apparecchiature elettriche (LVD)

```
    Compatibilità elettromagnetica (EMC)
    EN 55014-1:2017+A11:2020
    EN 55014-2:2015
    EN IEC 61000-3-2:2019
    EN61000-3-3:2013+A1:2019
A livello mondiale Commissione elettrotecnica internazionale (IEC)
    IEC 60335-1:2020
    Australia/Nuova Zelanda - RCM
COME CISPR 14.1:2018
AS/NZS 60335.1:2020
Stati Uniti d'America - FCC
Norme e regolamenti FCC, parte 15, capo B: }202
Compatibilità elettromagnetica (UKCA-EMC)
BS EN 55014-1:2017+A11:2020
BS EN 55014-2:2015
BS EN IEC 61000-3-2:2019
BS EN 61000-3-3:2013+A1:2019
Sicurezza delle apparecchiature elettriche (UKCA-LVD)
BS EN 60335-1:2012+A11:2014+A13:2017+A1:2019++A14:2019+A2:2019+A15:2021
UL962
UL62368
```

FIRMATO PER E PER CONTO DI VISION DA:

Stuart Lockhart
LUOGO E DATA DI EMISSIONE: REGNO UNITO 18/04/2022 Direttore

DEZE CONFORMITEITSVERKLARING WORDT VERSTREKT ONDER UITSLUITENDE VERANTWOORDELIJKHEID VAN:

VISION
Part of Azlan Logistics Ltd
Redwood 2,
Chineham Business Park
Crockford Lane
Basingstoke
Hampshire
RG24 8WQ
Verenigd Koninkrijk

Productidentificatie: VFM-F50

Land van herkomst: China

HET IN DEZE VERKLARING VERMELDE PRODUCT IS IN OVEREENSTEMMING MET:

Gemeenschapswetgeving EU Richtlijn 2011/65/EU inzake beperking van gevaarlijke stoffen (BGS) en richtlijn (EU) 2015/863 tot wijziging van bijlage II bij Richtlijn 2011/65/EU wat betreft stoffen waarvoor beperkingen gelden, om ftalaten op te nemen.

Geharmoniseerde normen Veiligheid van elektrische apparatuur (LVD)
EN 60335-1:2012+A11:2014+A13:2017+A1:2019++A14:2019+A2:2019+A15:2021

```
    Elektromagnetische compatibiliteit (EMC)
    EN 55014-1:2017+A11:2020
    EN 55014-2:2015
    EN IEC 61000-3-2:2019
    EN61000-3-3:2013+A1:2019
```

Wereldwijd
Internationale Elektrotechnische Commissie (IEC)
IEC 60335-1:2020

Australië/Nieuw-Zeeland - RCM
AS CISPR 14.1:2018
AS/NZS 60335.1:2020

Verenigde Staten - FCC
FCC-regels en -voorschriften, deel 15, subdeel B: 2020

Elektromagnetische compatibiliteit (UKCA-EMC)
BS EN 55014-1:2017+A11:2020
BS EN 55014-2:2015
BS EN IEC 61000-3-2:2019
BS EN 61000-3-3:2013+A1:2019

Veiligheid van elektrische apparatuur (UKCA-LVD)
BS EN 60335-1:2012+A11:2014+A13:2017+A1:2019++A14:2019+A2:2019+A15:2021

UL962
UL62368

ONDERTEKEND VOOR EN NAMENS VISION DOOR:

Stuart Lockhart
PLAATS EN DATUM VAN UITGAVE: VK 18-04-2022
Directeur

ESTA DECLARAÇÃO DE CONFORMIDADE É EMITIDA SOB A RESPONSABILIDADE EXCLUSIVA DE:

VISION

Part of Azlan Logistics Ltd
Redwood 2,
Chineham Business Park
Crockford Lane
Basingstoke
Hampshire
RG24 8WQ
Reino Unido

Identificação do produto: VFM-F50

País de origem: China

O PRODUTO MENCIONADO NESTA DECLARAÇÃO ESTÁ EM CONFORMIDADE COM:

Legislação comunitária da UE Diretiva 2011/65/UE sobre restrição de substâncias perigosas (RoHS) e Diretiva (UE) 2015/863, que altera o Anexo II da Diretiva 2011/65/UE no que diz respeito às substâncias restritas, para incluir os ftalatos.

Normas harmonizadas
Segurança de equipamento elétrico (LVD) EN 60335-1:2012 + A11:2014 + A13:2017 + A1:2019 + A14:2019 + A2:2019 + A15:2021

```
                                    Compatibilidade eletromagnética (CEM)
                                    EN 55014-1:2017 + A11:2020
                                    EN 55014-2:2015
                                    EN IEC 61000-3-2:2019
                                    EN 61000-3-3:2013 + A1:2019
Em todo o mundo Comissão Eletrotécnica Internacional (IEC)
    IEC 60335-1:2020
                            Austrália / Nova Zelândia - RCM
                                    AS CISPR 14.1:2018
                                    AS / NZS 60335.1:2020
                            Estados Unidos da América - FCC
                            Regras e regulamentos da FCC, parte 15, subparte B: }202
                            Compatibilidade eletromagnética (UKCA-EMC)
                    BS EN 55014-1:2017 + A11:2020
                    BS EN 55014-2:2015
                    BS EN IEC 61000-3-2:2019
                            BS EN 61000-3-3:2013 + A1:2019
                            Segurança de equipamento elétrico (UKCA-LVD)
                            BS EN 60335-1:2012 + A11:2014 + A13:2017 + A1:2019 + A14:2019 + A2:2019 +
A15:2021
                    UL962
                    UL62368
```

ASSINADO EM NOME DA VISION POR:

Stuart Lockhart
LOCAL E DATA DE EMISSÃO: RU 18/04/2022
Diretor

[^0]: Aby zapewnić dodatkową stabilność, przymocować do podłogi za pomocą
 PL odpowiednich mocowań NALEŻY uważać na ogrzewanie podłogowe

 Para uma estabilidade extra, fixe ao chão, utilizando elementos de fixação adequados LEMBRE-SE Tenha cuidado em caso de pavimento irradiante

[^1]: - Error State: To protect it may enter the error state. Send DOWN command for 5 seconds to enter reset mode.

